{ "cells": [ { "cell_type": "markdown", "id": "d26e3b44", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# Decomposing Qiskit circuits" ] }, { "cell_type": "markdown", "source": [ "In this notebook, we show how Qiskit circuits can be converted into Perceval circuits. To do so, we take the example of a simple gate-based circuit (a circuit producing GHZ states) and we show the translation to a linear optical circuit. We also show the equivalence between the two circuits." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "markdown", "source": [ "As usual we start by imported the useful libraries. Note that this notebook requires the installation of Qiskit (which can be easiliy done with `pip install qiskit`)." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "import perceval as pcvl\n", "import perceval.lib.phys as phys\n", "from perceval.converters import QiskitConverter\n", "\n", "from qiskit import QuantumCircuit\n", "from qiskit.quantum_info import Statevector" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## GHZ State generation in Qiskit" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "markdown", "source": [ "We first define the circuit generating GHZ states of 3 qubits with Qiskit. To do so, we first act with a Hadamard gate on qubit 0 to put in superposition of state $|0\\rangle$ and $|1\\rangle$. Then we perform two CNOT gates using qubit 0 as control and qubits 1 and 2 as targets." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 2, "outputs": [ { "data": { "text/plain": " ┌───┐ \nq_0: ┤ H ├──■────■──\n └───┘┌─┴─┐ │ \nq_1: ─────┤ X ├──┼──\n └───┘┌─┴─┐\nq_2: ──────────┤ X ├\n └───┘", "text/html": "
     ┌───┐          \nq_0: ┤ H ├──■────■──\n     └───┘┌─┴─┐  │  \nq_1: ─────┤ X ├──┼──\n          └───┘┌─┴─┐\nq_2: ──────────┤ X ├\n               └───┘
" }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create a Quantum Circuit acting on the q register\n", "circuit = QuantumCircuit(3)\n", "\n", "# Add a H gate on qubit 0\n", "circuit.h(0)\n", "\n", "# Add CX (CNOT) gates on control qubit 0 and target qubits 1 and 2\n", "circuit.cx(0, 1)\n", "circuit.cx(0, 2)\n", "\n", "# Draw the circuit\n", "circuit.draw()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "We display the final state when starting from the input state $|000\\rangle$." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 3, "outputs": [ { "data": { "text/plain": "", "text/latex": "$$\\frac{\\sqrt{2}}{2} |000\\rangle+\\frac{\\sqrt{2}}{2} |111\\rangle$$" }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Set the initial state of the simulator to the ground state using from_int\n", "state = Statevector.from_int(0, 2**3)\n", "\n", "# Evolve the state by the quantum circuit\n", "state = state.evolve(circuit)\n", "\n", "#draw using latex\n", "state.draw('latex')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## Conversion to Perceval" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "markdown", "source": [ "With the use of `QiskitConverter`, we can transform the Qiskit circuit into a Perceval circuit. It uses 2 modes per qubit and additional modes for ancillary photons to perform deterministically two-qubit gates. Below the first six modes correspond to the three logical qubits (see the 'Spatial Modes encoding' paragraph in the 'Basics' section of the documentation) of the gate-based circuit above.\n", "\n", "The other modes are used to successfully implement two-qubit gates via heralding or post-selection. Heralding employs [4 ancillary modes](https://doi.org/10.1073/pnas.1018839108) while post-selection employs [2 ancillary modes](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.65.062324). With the option `heralded=True` in the method `.convert` on a `QiskitConverter` object, every CNOT but the last is implemented with a heralding scheme. Here it means that it would add $4+2$ ancillary modes. The option `heralded=True` only implements post-selected CNOTs. Here it would mean $2+2$ ancillary modes. A cautionary warning: post-selected CNOTs do not compose generally." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [ { "data": { "text/plain": "", "text/html": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nΦ_a=pi\nΦ_d=2*pi\nΘ=3*pi/4\n\n\nH\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nΦ_b=pi\nΦ_d=0\nR=0.228\n\n\n\n\n\n\n\n\nR=0.228\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nR=0.758\n\n\n\n\n\n\n\nΦ_b=pi\nΦ_d=0\nR=0.758\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nHERALDED CNOT\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nΦ_b=pi\nΦ_d=0\nR=0.228\n\n\n\n\n\n\n\n\nR=0.228\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nR=0.758\n\n\n\n\n\n\n\nΦ_b=pi\nΦ_d=0\nR=0.758\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nHERALDED CNOT\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n[q_0:0]\n1\n\n[q_0:0]\n\n[q_0:1]\n\n[q_0:1]\n\n[q_1:0]\n1\n\n[q_1:0]\n\n[q_1:1]\n\n[q_1:1]\n\n[q_2:0]\n1\n\n[q_2:0]\n\n[q_2:1]\n\n[q_2:1]\n\n[herald0]\n0\n\n[herald0]\n0\n\n[herald1]\n1\n\n[herald1]\n1\n\n[herald2]\n0\n\n[herald2]\n0\n\n[herald3]\n1\n\n[herald3]\n1\n\n[herald4]\n0\n\n[herald4]\n0\n\n[herald5]\n1\n\n[herald5]\n1\n\n[herald6]\n0\n\n[herald6]\n0\n\n[herald7]\n1\n\n[herald7]\n1" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qiskit_converter = QiskitConverter(phys)\n", "quantum_processor = qiskit_converter.convert(circuit, heralded=True)\n", "pcvl.pdisplay(quantum_processor, recursive=True)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "With this converted circuit, we can now check that the resulting state is the same as before the conversion." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "data": { "text/plain": "", "text/html": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n
state probability
|1,0,1,0,1,0>1/2
|0,1,0,1,0,1>1/2
|1,0,1,0,0,1>0
|1,0,0,1,1,0>0
|0,1,1,0,0,1>0
|0,1,0,1,1,0>0
|1,0,0,1,0,1>0
|0,1,1,0,1,0>0
" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "simulator_backend = pcvl.BackendFactory().get_backend(\"Naive\")\n", "\n", "_, output_distribution = quantum_processor.run(simulator_backend)\n", "pcvl.pdisplay(output_distribution, precision=1e-2)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "This circuit can now be converted using a general interferometer decomposition so it can be implemented on a generic photonic chip." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [], "source": [ "u = quantum_processor.circuit.compute_unitary(use_symbolic=False)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [ { "data": { "text/plain": "", "text/html": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nΘ=7*pi/4\n\n\n\nΦ=0\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=2.451589\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=4.126832\n\n\n\n\n\n\n\n\n\n\n\nΦ=0\n\n\n\n\n\n\n\nΘ=5.751697\n\n\n\nΦ=pi/2\n\n\n\n\n\n\n\nΘ=4.000939\n\n\n\nΦ=pi/2\n\n\n\n\n\n\n\nΘ=1.937322\n\n\n\nΦ=2.970218\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=1.742171\n\n\n\n\n\n\n\nΘ=5.138768\n\n\n\nΦ=pi/2\n\n\n\n\n\n\nΘ=0.787983\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\nΘ=5.364659\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\n\nΘ=4.285588\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\nΘ=2.142042\n\n\n\nΦ=pi/2\n\n\n\n\n\n\nΘ=1.252148\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\n\nΘ=2.425285\n\n\n\nΦ=pi\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=3.724734\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=1.456432\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=1.606489\n\n\n\n\n\n\nΘ=6.038759\n\n\n\nΦ=2.595932\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=2.116457\n\n\n\n\n\n\n\nΘ=1.178313\n\n\n\nΦ=pi/2\n\n\n\n\n\n\nΘ=4.285588\n\n\n\nΦ=pi/2\n\n\n\n\n\n\nΘ=0.967067\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\nΘ=4.255214\n\n\n\nΦ=0.22376\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=4.488629\n\n\n\n\n\n\n\nΘ=5.2267\n\n\n\nΦ=3.442639\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=5.982139\n\n\n\n\n\n\n\n\n\n\n\nΦ=pi\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=4.050745\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=6.076092\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=1.236768\n\n\n\n\n\n\nΘ=2.643793\n\n\n\nΦ=pi\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=0.763438\n\n\n\n\n\n\nΘ=5.903077\n\n\n\nΦ=1.088905\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=0.481891\n\n\n\n\n\n\n\nΘ=1.926074\n\n\n\nΦ=5.358426\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=4.2908\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=3.786773\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=5.956187\n\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=5.740554\n\n\n\n\n\n\n\nΘ=0.955317\n\n\n\nΦ=pi\n\n\n\n\n\n\n\nΘ=1.072997\n\n\n\nΦ=3*pi/2\n\n\n\n\n\n\nΘ=5.067666\n\n\n\nΦ=6.129562\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=4.866012\n\n\n\n\n\n\nΘ=5.092497\n\n\n\nΦ=1.756105\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=2.902757\n\n\n\n\n\n\nΘ=3*pi/2\n\n\n\nΦ=3.171965\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=1.963735\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=2.771808\n\n\n\n\n\n\nΘ=4*pi/3\n\n\n\nΦ=pi\n\n\n\n\n\n\n\nΘ=4.096909\n\n\n\nΦ=5.073798\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=5.125491\n\n\n\n\n\n\n\nΘ=pi/2\n\n\n\nΦ=5.508674\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ub = (pcvl.Circuit(2)\n", " // phys.BS(theta=pcvl.Parameter(\"theta\"))\n", " // (0, phys.PS(phi=pcvl.Parameter(\"φ_a\"))))\n", "\n", "pc_norm = pcvl.Circuit.decomposition(u, ub, shape=\"triangle\")\n", "pcvl.pdisplay(pc_norm, compact=True, render_size=0.5)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 5 }